yandex
Калькулятор ценТарифыАкцииДокументацияО насКарьера в Cloud.ruНовостиЮридические документыКонтактыРешенияРеферальная программаКейсыПартнерство с Cloud.ruБезопасностьEvolutionAdvancedEvolution StackОблако VMwareML SpaceВ чем отличия платформ?БлогОбучение и сертификацияМероприятияИсследования Cloud.ruЛичный кабинетВойтиЗарегистрироватьсяEvolution ComputeEvolution Managed KubernetesEvolution Object StorageEvolution Managed PostgreSQL®Облако для мобильных и веб‑приложенийАналитика данных в облакеEvolution Bare MetalEvolution SSH KeysEvolution ImageСайт в облакеEvolution DNSEvolution VPCEvolution Load BalancerEvolution Magic RouterEvolution DiskХранение данных в облакеEvolution Container AppsEvolution Artifact RegistryEvolution Managed ArenadataDBEvolution Managed TrinoEvolution Managed SparkАналитика данных в облакеEvolution ML InferenceEvolution Distributed TrainEvolution ML FinetuningEvolution NotebooksCurator Anti-DDoSCurator Anti‑DDoS+WAFUserGate: виртуальный NGFWStormWall: Anti-DDoSEvolution TagsEvolution Task HistoryCloud MonitoringCloud LoggingАренда GPUAdvanced Object Storage ServiceAdvanced Elastic Cloud ServerAdvanced Relational Database Service for PostgreSQLРазработка и тестирование в облакеAdvanced Image Management ServiceAdvanced Auto ScalingDirect ConnectCDNCross-platform connectionAdvanced Enterprise RouterAdvanced Cloud Backup and RecoveryAdvanced Data Warehouse ServiceAdvanced Elastic Volume ServiceAdvanced Cloud Container EngineAdvanced FunctionGraphAdvanced Container Guard ServiceAdvanced Software Repository for ContainerAdvanced Document Database Service with MongoDBAdvanced Relational Database Service for MySQLAdvanced Relational Database Service for SQL ServerCloud AdvisorAdvanced Server Migration ServiceAdvanced Data Replication ServiceAdvanced API GatewayAdvanced CodeArtsAdvanced Distributed Message Service for KafkaAdvanced Distributed Message Service for RabbitMQAdvanced DataArts InsightAdvanced CloudTableAdvanced MapReduce ServiceAdvanced Cloud Trace ServiceAdvanced Application Performance ManagementAdvanced Identity and Access ManagementAdvanced Enterprise Project Management ServiceVMware: виртуальный ЦОД с GPUVMware: виртуальный ЦОДУдаленные рабочие столы (VDI)VMware: сервер Bare MetalИнфраструктура для 1С в облакеУдаленные рабочие столыМиграция IT‑инфраструктуры в облако3D-моделирование и рендерингVMware: резервное копирование виртуальных машинVMware: резервный ЦОДVMware: резервное копирование в облакоVMware: миграция виртуальных машин
Поиск
Связаться с нами

Машинное обучение без учителя

Машинное обучение без учителя или неконтролируемое обучение (Unsupervised Learning) — метод машинного обучения (Machine Learning, ML), при котором модель обучается выявлять закономерности и скрытые взаимосвязи на наборах неразмеченных данных без контроля со стороны пользователя.

Обзоры
Иллюстрация для статьи на тему «Машинное обучение без учителя»
Продукты из этой статьи:
Иконка-ML Space
ML Space
Иконка-Evolution Foundation Models
Evolution Foundation Models
Иконка-Evolution AI Agents
Evolution AI Agents
Иконка-Evolution ML Inference
Evolution ML Inference

Гипервизор — программное обеспечение для создания, запуска и контроля виртуальных машин. На них могут быть установлены разные операционные системы (ОС). Они изолированы от аппаратных систем и используют ресурсы виртуального компьютера, на котором запущены.

При неконтролируемом обучении алгоритму не сообщается конечная цель или шаблоны, а только предоставляются массивы данных — общие признаки распознаются автоматически.

Примечание: Алгоритмы неконтролируемого обучения могут использоваться для решения более сложных задач обработки по сравнению с контролируемым обучением. Вместе с тем, результат обучения без учителя часто непредсказуем и не имеет очевидных закономерностей.

Дарим до 20 000 бонусов
Дарим до 20 000 бонусов
4 000 бонусов — физическим лицам, 20 000 бонусов — юридическим
Evolution AI Factory
Evolution AI Factory
Цифровая среда нового поколения для создания, запуска и масштабирования приложений на базе GenAI
Подробнее

Типы систематизации данных

В неконтролируемом машинном обучении используется три алгоритма обработки данных:

  • Ассоциативные алгоритмы. Предназначены для нахождения данных или параметров, которые часто используются вместе. Например, ассоциативные алгоритмы помогают предлагать клиенту третий товар на основе двух выбранных.

  • Снижение размерности. Подразумевает преобразование данных для уменьшения их числа и выделения основных переменных. Метод используется для удаления из выборки неинформативных и избыточных данных, усложняющих обработку.

  • Кластеризация. Подразумевает разделение объектов (данных) из выборки на отдельные кластеры. То есть, при кластеризации алгоритмы изучают исходные данные, находят между ними взаимосвязи и создают на их основе группы.

Типы кластеризации

По типам кластеризацию принято делить на:

  • восходящую — есть кластеры и подкластеры с четкой иерархией;

  • нисходящую — объекты сразу делятся на классы;

  • исключающую — каждый объект относится только к одному классу;

  • перекрывающую — объект относится к нескольким группам или находится между двумя кластерами;

  • нечетную — отношение некоторых объектов невозможно определить;

  • полную — каждый объект непременно относится к одному из кластеров;

  • частичную — некоторые объекты могут не относиться к группам.

Сценарии применения обучения без учителя

Неконтролируемое обучение может применяться для:

  • автоматического разделения наборов данных на группы в соответствии с выявленным сходством;

  • обнаружения аномалий и нетипичных показателей в наборах данных;

  • определения наборов элементов, показателей и признаков, которые часто встречаются в обрабатываемых данных;

  • предварительной обработки данных, в том числе для разделения наборов на части и уменьшения количества объектов в наборах.

Примечание: Результаты обучения зависят от количества обработанных данных — чем их больше, тем больше шанс обнаружить новые зависимости.

Неконтролируемое машинное обучение может использоваться для выполнения задач любой сложности — главное собрать достаточный массив данных и использовать специализированные инструменты или сервисы. Например, можно использовать платформу для совместной ML-разработки с ускорением до +1700 GPU Tesla v100 и A100 ML Space, на которой разработчикам доступны наборы сервисов для переноса данных и управления артефактами, готовые окружения для препроцессинга и обучения, а также инструменты для деплоя и тестирования моделей.

Evolution Managed RAG
Evolution Managed RAG
Сервис для обогащения языковой модели вашими данными для генерации точных ответов
Узнать подробнее
Продукты из этой статьи:
Иконка-ML Space
ML Space
Иконка-Evolution Foundation Models
Evolution Foundation Models
Иконка-Evolution AI Agents
Evolution AI Agents
Иконка-Evolution ML Inference
Evolution ML Inference
6 июля 2022

Вам может понравиться